Biochimica et Biophysica Acta, 600 (1980) 796-804 © Elsevier/North-Holland Biomedical Press

BBA 78871

# VANADATE INHIBITION OF THE Ca<sup>2+</sup>-ATPase FROM HUMAN RED CELL MEMBRANES

HÉCTOR BARRABIN, PATRICIO J. GARRAHAN and ALCIDES F. REGA

Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires (Argentina)

(Received January 8th, 1980)

Key words:  $Ca^{2+}$ -ATPase; Vanadate inhibition;  $K^{+}$ ;  $Li^{+}$ ; (Red cell membrane)

### Summary

- (1)  $VO_3^-$  combines with high affinity to the  $Ca^{2+}$ -ATPase and fully inhibits  $Ca^{2+}$ -ATPase and  $Ca^{2+}$ -phosphatase activities. Inhibition is associated with a parallel decrease in the steady-state level of the  $Ca^{2+}$ -dependent phosphoenzyme.
- (2)  $VO_3^-$  blocks hydrolysis of ATP at the catalytic site. The sites for  $VO_3^-$  also exhibit negative interactions in affinity with the regulatory sites for ATP of the  $Ca^{2+}$ -ATPase.
- (3) The sites for  $VO_3^-$  show positive interactions in affinity with sites for  $Mg^{2^+}$  and  $K^+$ . This accounts for the dependence on  $Mg^{2^+}$  and  $K^+$  of the inhibition by  $VO_3^-$ . Although, with less effectiveness,  $Na^+$  substitutes for  $K^+$  whereas  $Li^+$  does not. The apparent affinities for  $Mg^{2^+}$  and  $K^+$  for inhibition by  $VO_3^-$  seem to be less than those for activation of the  $Ca^{2^+}$ -ATPase.
- (4) Inhibition by  $VO_3^-$  is independent of  $Ca^{2+}$  at concentrations up to 50  $\mu$ M. Higher concentrations of  $Ca^{2+}$  lead to a progressive release of the inhibitory effect of  $VO_3^-$ .

#### Introduction

Since the discovery that commercial ATP obtained from equine muscle contains  $VO_3^-$  as an impurity many studies on its effects on the  $(Na^+ + K^+)$ -ATPase have appeared (for references see Ref. 1).  $VO_3^-$  inhibits  $(Na^+ + K^+)$ -ATPase with high affinity through a process which shows complex interactions with ATP,  $Mg^{2+}$ ,  $Na^+$  and  $K^+$  [2-4]. In a preliminary report Bond and Hudgins [5] stated that the  $Ca^{2+}$ -ATPase of red cell membranes is sensitive to  $VO_3^-$ . This finding has been recently extended to  $Ca^{2+}$ -activated ATPase from sarcoplasmic reti-

culum (Ref. 6 and Barrabin, H. and de Meis, L., personal communication) and ascites cells [6] and to the active transport of calcium out of squid axons [7]. Studies of the effects of  $VO_3^-$  are useful because they may help in the understanding of the mechanism of hydrolysis of ATP by cation transport systems and give information on the physiological role of  $VO_3^-$  as a regulator of active transport of cations in vivo.

In this paper we present a study of the effects of  $VO_3^-$  on the  $Ca^{2^+}$ -ATPase of human red cell membranes. Results show that  $VO_3^-$  inhibits with high affinity the  $Ca^{2^+}$ -ATPase and that the inhibition is modulated by  $Mg^{2^+}$  and  $K^+$  in a way which resembles in many aspects the effects of these cations during inhibition of the  $(Na^+ + K^+)$ -ATPase by  $VO_3^-$ .

#### Materials and Methods

Materials. Fragmented membranes from human red blood cells were prepared as described previously [8]. This procedure yields membranes which are almost free of calmodulin [9]. [32P]ATP was prepared according to the method of Glynn and Chappell [10] using enzymes and cofactors from Sigma Chemical Co. (U.S.A.). 32P-labelled orthophosphate was provided by Comisión Nacional de Energía Atómica, Argentina. ATP prepared from yeast was purchased from Boehringer-Mannheim GmbH and used as the disodium salt. Vanadate solutions were prepared by dissolving NH<sub>4</sub>VO<sub>3</sub> in a solution of 50 mM Tris-HCl (pH 7.7). All other reagents were of analytical reagent grade.

Methods. Unless indicated, enzymatic assays were performed by incubating membranes at 37°C in media containing: 5 mM MgCl<sub>2</sub>, 0.5 mM EGTA, 0.6 mM CaCl<sub>2</sub>, 100 mM KCl, 50 mM Tris-HCl (pH 7.8) and various amounts of ATP, p-nitrophenylphosphate (ditris salt) and fragmented membranes. Ca2+-dependent activities were taken as the difference between the activities in the above media and the activities measured in the same media except that CaCl<sub>2</sub> was omitted. When the concentration of ATP during the assays was more than 0.1 mM the concentration of membranes was 1 mg protein/ml and the orthophosphate liberated was estimated by a modification of the Fiske-Subbarow procedure [11]. When the concentration of ATP was less than 0.1 mM, Ca<sup>2+</sup>-ATPase activity was measured following the procedure described previously [12] using [32P]ATP as the substrate. Ca2+-phosphatase activity was measured using 7 mM p-nitrophenylphosphate (ditris salt) in a medium with 1 mM MgATP and 1 · 10<sup>-3</sup> M ouabain according to the method of Rega et al. [13]. Ca<sup>2+</sup>-dependent phosphoenzyme was measured after 30 s phosphorylation in media with 15  $\mu$ M [32P]ATP at 0°C following the procedure described previously [14]. Control experiments showed that at 37°C no pretreatment with VO<sub>3</sub> was necessary for maximal inhibition but, since the onset of inhibition at 0°C is much slower than at 37°C, before phosphorylation the membranes were preincubated at 37°C during 10 min in the reaction media without ATP. Protein was estimated by using the method of Lowry et al. [15].

## Results

Fig. 1 compares the effects of increasing concentrations of VO<sub>3</sub> on the enzymic activities of the Ca<sup>2+</sup>-ATPase from red cell membranes. ATPase activi-

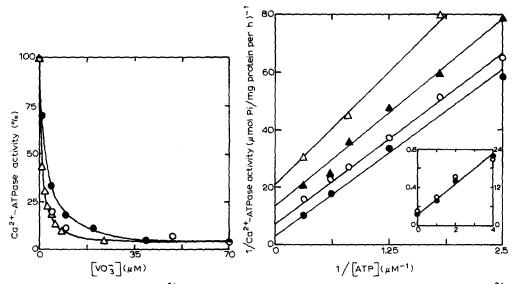



Fig. 1. The effects of VO3 on Ca<sup>2+</sup>-ATPase activity measured at 15 ( $\circ$ ) and 750 ( $\bullet$ )  $\mu$ M ATP and on Ca<sup>2+</sup>-phosphate activity ( $\triangle$ ) of human red cell membranes. Activities are expressed as percent of the activities at 0  $\mu$ M VO3 which were ( $\mu$ mol/mg protein per h): Ca<sup>2+</sup>-ATPase at 750  $\mu$ M ATP, 1.05; Ca<sup>2+</sup>-ATPase at 15  $\mu$ M ATP, 0.27; and Ca<sup>2+</sup>-phosphatase, 0.37.

Fig. 2. A Lineweaver-Burk plot of  $Ca^{2+}$ -ATPase activity as a function of ATP concentration measured in media with 0 ( $\bullet$ ); 1 ( $\circ$ ); 2 ( $\bullet$ ) and 4 ( $\diamond$ )  $\mu$ M VO $_3$ . The inset presents the reciprocal of  $K_{\mathbf{m}}$  ( $\circ$ , ( $\mu$ M) left-hand site ordinate) and of V ( $\bullet$ , ( $\mu$ mol/mg protein per h) right-hand side ordinate) obtained from the intercepts of the lines that fit the points in the figure, as a function of the concentration of VO $_3$  ( $\mu$ M).

ties were measured at 15 and 750  $\mu$ M ATP. Results show that Ca<sup>2+</sup>-ATPase and Ca<sup>2+</sup>-phosphatase activities are inhibited with high affinity. We have shown elsewhere that the Ca<sup>2+</sup>-ATPase possesses high-affinity catalytic sites and low-affinity regulatory sites for ATP [12]. At 15  $\mu$ M ATP only the catalytic sites of the ATPase are significantly occupied. Therefore, full inhibition at 15  $\mu$ M ATP indicates that binding of ATP at the regulatory site is not required for VO<sub>3</sub> to inhibit Ca<sup>2+</sup>-ATPase activity.

## Effects of VO3 at low [ATP]

The interactions of  $VO_3^-$  and ATP at the catalytic site were studied measuring the effects of different concentrations of  $VO_3^-$  on the substrate activation curve of the  $Ca^{2+}$ -ATPase at low (0.4 to 3.2  $\mu$ M) ATP concentrations. Double-reciprocal plots of the activity vs. ATP concentration (Fig. 2) give straight lines for each of the  $VO_3^-$  concentrations tested. The lines are almost parallel to one another indicating that as the concentration of  $VO_3^-$  increases V and  $F_m$  decrease in a roughly proportional fashion. When the reciprocal of  $K_m$  and of V are plotted against the concentration of  $VO_3^-$  (inset in Fig. 2) the values can be fitted by straight lines of positive intercept and slope. This indicates that both  $K_m$  and V vary with  $VO_3^-$  concentration according to an equation containing a term  $(1 + (VO_3^-)/K_1)^{-1}$ . The value of  $K_1^-$  in this equation can be estimated from the intercept at the abscissa of the plot in the inset to Fig. 2 to be about 0.8  $\mu$ M for both  $K_m$  and V.

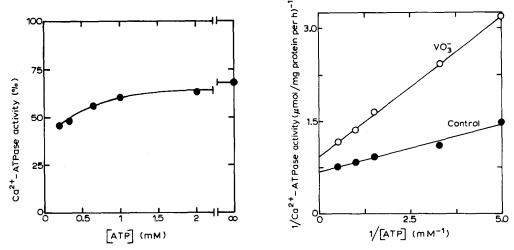



Fig. 3. Percentage of  $Ca^{2+}$ -ATPase activity remaining in the presence of  $1 \mu M \text{ VO}_{3}$  as a function of ATP concentration. The  $Ca^{2+}$ -ATPase at infinite ATP concentration was estimated by extrapolation of double-reciprocal plots of the activity vs. ATP concentration.

Fig. 4. A Lineweaver-Burk plot of  $Ca^{2+}$ -ATPase activity vs. ATP concentration from 0.2 to 2.0 mM in the presence and absence of 1  $\mu$ M VO<sub>3</sub>. The points represent the difference between total  $Ca^{2+}$ -ATPase activity and the maximum activity resulting from the occupation of the high-affinity site for ATP. The latter, calculated from double-reciprocal plots similar to those used for the experiment of Fig. 2, were 0.29  $\mu$ mol/mg per h and 0.15  $\mu$ mol/mg per h in the absence and presence of 1  $\mu$ M VO<sub>3</sub>, respectively.

## Effects of $VO_3$ at high [ATP]

Results in Fig. 3 show that the ATPase activity remaining in the presence of 1 μM VO<sub>3</sub> increases from 48 to 70% in going from 0.2 mM to non-limiting concentrations of ATP. The fact that inhibition by VO<sub>3</sub> is partially surmountable by ATP at concentrations at which the catalytic site is fully occupied indicates that VO<sub>3</sub> interacts with the regulatory sites for ATP. To study this, activation by ATP at the regulatory site of the Ca2+-ATPase was measured in media with and without  $1 \mu M \text{ VO}_3^-$  (Fig. 4).  $\text{VO}_3^-$  reduces by about 40% the maximum activating effect of ATP and increases from 230 to 480  $\mu$ M the  $K_m$  value of the regulatory site for ATP (see Fig. 2). Since at low ATP concentration 1 μM VO<sub>3</sub> inhibits 50% of the Ca<sup>2+</sup>-ATPase, the reduction in the maximum activating effect of high ATP concentration can be fully accounted for by the effects of  $VO_3^-$  at the catalytic site. The decrease by  $VO_3^-$  of the affinity for ATP is paralleled by a similar effect of ATP on the affinity for VO<sub>3</sub> since, as can be seen in Fig. 1, when ATP concentration is raised from 15 to 750  $\mu$ M the concentration of VO<sub>3</sub> for half maximal inhibition is doubled. It seems, therefore, that between the sites for VO<sub>3</sub> and the regulatory sites for ATP there are negative interactions in affinity. These may explain the partial release of inhibition that is observed at high concentrations of ATP (Fig. 3).

## The effects of Ca2+

Inhibition of the Ca<sup>2+</sup>-ATPase by 1  $\mu$ M VO $_3^-$  was measured at Ca<sup>2+</sup> concentrations ranging from 2 to 1000  $\mu$ M (Fig. 5). At concentrations of Ca<sup>2+</sup> up to 40  $\mu$ M the inhibition by VO $_3^-$  remains constant, indicating that there are no

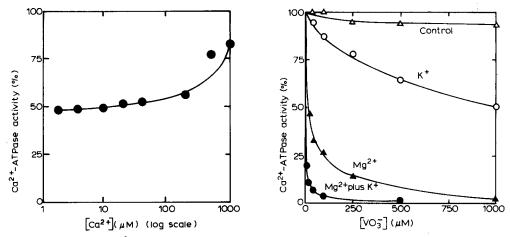
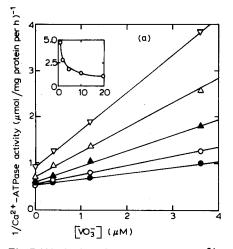



Fig. 5. Percentage of  $Ca^{2+}$ -ATPase activity remaining in the presence of  $1 \mu M$  VO $\bar{3}$  as a function of the concentration of  $Ca^{2+}$  in media with 1 mM ATP. All media contained 3 mM  $Ca^{2+}$ -EDTA buffer and the concentration of  $Ca^{2+}$  was calculated according to the method of Wolff [18].


Fig. 6. The effects of VO $\bar{3}$  on Ca<sup>2+</sup>-ATPase activity. The activity was measured in media containing 0 mM MgCl<sub>2</sub> and 0 mM KCl ( $\triangle$ ); 100 mM KCl ( $\bigcirc$ ); 5 mM MgCl<sub>2</sub> ( $\triangle$ ) or 5 mM MgCl<sub>2</sub> and 100 mM KCl ( $\bigcirc$ ). The concentration of ATP was 15  $\mu$ M. At this concentration of ATP the Ca<sup>2+</sup> pump catalyzes a significant hydrolysis of ATP in the absence of added Mg<sup>2+</sup> [19]. Activities are expressed as % of the activity at 0 mM VO $\bar{3}$  which were ( $\mu$ mol/mg protein per h): 0 mM MgCl<sub>2</sub> and 0 mM KCl, 0.029; 100 mM KCl, 0.042; 5 mM MgCl<sub>2</sub>, 0.17 amd 5 mM MgCl<sub>2</sub> and 100 mM KCl, 0.25.

interactions between the high-affinity sites for  $Ca^{2+}$  and the sites for  $VO_3^-$  of the  $Ca^{2+}$ -ATPase. When the  $Ca^{2+}$  concentration rises above 100  $\mu M$  inhibition by  $VO_3^-$  decreases progressively.

## The effects of Mg<sup>2+</sup> and K<sup>+</sup>

Fig. 6 shows the effects of increasing concentrations of  $VO_3^-$  on  $Ca^{2+}$ -ATPase activity in media with and without 100 mM KCl in the presence and absence of 5 mM MgCl<sub>2</sub>. In the absence of Mg<sup>2+</sup> and K<sup>+</sup>,  $VO_3^-$  is almost ineffective. In media with Mg<sup>2+</sup> alone, half-maximal inhibition is attained at 25  $\mu$ M VO<sub>3</sub><sup>-</sup>. This value is lowered to 1.2  $\mu$ M by the inclusion of K<sup>+</sup> together with Mg<sup>2+</sup>. The effect of K<sup>+</sup> is strongly dependent on Mg<sup>2+</sup>, since with K<sup>+</sup> alone half-maximal inhibition is only reached at 1 mM VO<sub>3</sub><sup>-</sup>.

Fig. 7A shows a series of Dixon plots relating the reciprocal of Ca<sup>2+</sup>-ATPase activity to VO<sub>3</sub> concentrations, measured at a series of Mg<sup>2+</sup> levels and in the presence of 100 mM KCl. The plots are straight lines, suggesting that for all the Mg<sup>2+</sup> concentrations tested VO<sub>3</sub> combines at a single class of site the occupation of which leads to total inhibition of the Ca<sup>2+</sup>-ATPase. The inset in Fig. 7A shows that as Mg<sup>2+</sup> concentration increases the concentration of VO<sub>3</sub> for half-maximal inhibition drops along a curve which tends to saturation at 20 mM Mg<sup>2+</sup>. When the reciprocal of the percent inhibition is plotted against the reciprocal of the concentration of Mg<sup>2+</sup> at different VO<sub>3</sub> concentrations, straight lines are obtained (Fig. 7B), indicating that Mg<sup>2+</sup> increases the affinity for VO<sub>3</sub> by combination at a single class of site. The concentration of Mg<sup>2+</sup> for half-maximal effect drops from 5.3 to 0.8 mM as VO<sub>3</sub> increases from 0.4 to 3.6 μM.



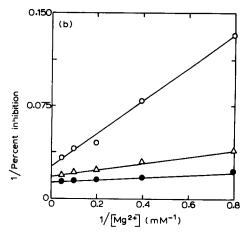



Fig. 7 (A). A plot of the reciprocal of  $Ca^{2+}$ -ATPase activity as a function of  $VO_3^-$  concentration in media containing 0.5 mM ATP and 1.25 ( $\bullet$ ); 2.5 ( $\circ$ ); 5.0 ( $\blacktriangle$ ); 10.0 ( $\triangle$ ), or 20 ( $\triangledown$ ) mM MgCl<sub>2</sub>. The inset represents the concentration of  $VO_3^-$  for half-maximal inhibition ( $\mu$ M) calculated from the lines that fit the experimental points, as a function of the concentration of Mg<sup>2+</sup> (mM). (B) A reciprocal plot of the percent inhibition of the  $Ca^{2+}$ -ATPase by 0.4 ( $\bullet$ ); 1.2 ( $\triangle$ ) and 3.6 ( $\bigcirc$ )  $\mu$ M VO $_3^-$  as a function of the reciprocal of the concentration of Mg<sup>2+</sup> in media with 0.5 mM ATP.

This suggests that the apparent constant for the dissociation of Mg<sup>2+</sup> from its sites decreases with VO<sub>3</sub>.

Control experiments (not shown) indicated that under the conditions of Fig. 7A and B and in the absence of  $VO_3^-$ , activation of the  $Ca^{2+}$ -ATPase by  $Mg^{2+}$  reaches saturation at 0.6 mM and that at concentrations of  $Mg^{2+}$  greater than 5 mM, activity progressively declines. The kinetics of the stimulatory effect of  $K^+$  on inhibition by  $VO_3^-$  are essentially similar to those of  $Mg^{2+}$ . Dixon plots of the effects of  $VO_3^-$  on  $Ca^{2+}$ -ATPase activity at different  $K^+$  concentrations give straight lines (Fig. 8A). The concentration of  $VO_3^-$  giving half-maximal inhibition decreases as a function of  $K^+$  concentration, tending to a value of about 1  $\mu$ M (inset in Fig. 8A). Plots of the reciprocal of percent inhibition against the reciprocal of  $K^+$  concentration give straight lines for each of the  $VO_3^-$  concentrations tested. The concentration of  $K^+$  giving half-maximal effect increases from 17 to 83 mM as  $VO_3^-$  increases from 0.6 to 10  $\mu$ M. In a parallel experiment, the concentration of  $K^+$  for half-maximal activation of the  $Ca^{2+}$ -ATPase in the absence of  $VO_3^-$  was found to be 25 mM.

## The effects of Na<sup>+</sup> and Li<sup>+</sup>

Na<sup>+</sup> activates the Ca<sup>2+</sup>-ATPase with an apparent affinity 6-fold lower than that of K<sup>+</sup>. Li<sup>+</sup> does not activate the enzyme [16]. In the experiment in Fig. 9, the effect of K<sup>+</sup> on inhibition by  $VO_3^-$  was compared with that of Na<sup>+</sup> and Li<sup>+</sup>. Results show that Li<sup>+</sup> does not stimulate inhibition by  $VO_3^-$ . Under conditions in which K<sup>+</sup> lowers by 30-fold the concentration of  $VO_3^-$  for half-maximal inhibition, Na<sup>+</sup> lowers it 5-fold. Hence Na<sup>+</sup> is 6-fold less effective than K<sup>+</sup> during inhibition by  $VO_3^-$ .

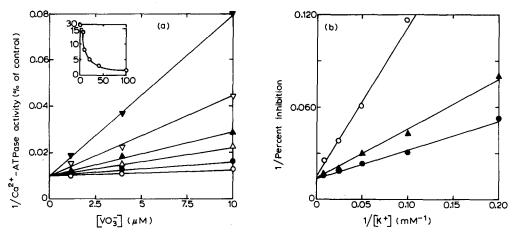



Fig. 8 (A). A plot of the reciprocal of  $Ca^{2+}$ -ATPase activity as a function of  $VO_3^-$  concentration measured in media with 0.5 mM ATP and 0 (0); 5 ( $\bullet$ ); 10 ( $\triangle$ ); 20 ( $\triangle$ ); 20 ( $\triangle$ ); 40 ( $\nabla$ ) and 100 ( $\nabla$ ) mM KCl. For each K<sup>+</sup> concentration used,  $Ca^{2+}$ -ATPase activity is expressed as percent of the activity in the absence of  $VO_3^-$ . The inset represents the concentration of  $VO_3^-$  for half-maximal inhibition ( $\mu$ M), calculated from the lines that fit the experimental points, as a function of the concentration of K<sup>+</sup> (mM). (B) A reciprocal plot of the percent inhibition of the  $Ca^{2+}$ -ATPase by 0.6 ( $\bullet$ ); 4.0 ( $\bullet$ ) and 10.0 (0)  $\mu$ M VO $_3^-$  as a function of the reciprocal of the concentration of K<sup>+</sup> in media with 0.5 mM ATP.

# The effect of VO<sub>3</sub> on Ca<sup>2+</sup>-dependent phosphoenzyme

Red cell membranes were preincubated during 10 min at 37°C in media containing different concentrations of VO<sub>3</sub> with and without 100 mM KCl. After this the membranes were phosphorylated with [<sup>32</sup>P]ATP at 0°C. Results in

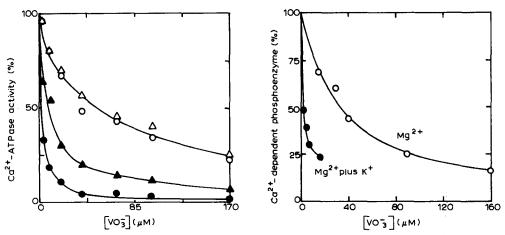



Fig. 9. The effect of VO $\bar{3}$  on Ca<sup>2+</sup>-ATPase activity measured at 0.75 mM ATP in media containing 100 mM LiCl ( $\circ$ ); NaCl ( $\bullet$ ) or KCl ( $\bullet$ ). 100 mM Tris-HCl replaced the monovalent cations in the control ( $\triangle$ ). Activities are expressed as percent of the activities in the absence of VO $\bar{3}$ .

Fig. 10. The effect of  $VO_3^-$  on the level of  $Ca^{2+}$ -dependent phosphoenzyme formed in the presence of 15  $\mu$ M [ $^3$ 2P]ATP in media with ( $^{\bullet}$ ) and without ( $^{\circ}$ ) 100 mM KCl. The amount of phosphoenzyme is expressed as percent of the amount of phosphoenzyme measured in the absence of  $VO_3^-$  which was 1.65 pmol/mg protein in media with K<sup>+</sup> and 0.96 pmol/mg protein in media without KCl.

Fig. 10 show that the level of phosphoenzyme decreases with  $VO_3^-$ . Half-maximal effect of  $VO_3^-$  is reached at 35  $\mu$ M in the presence of  $Mg^{2+}$  and at 2  $\mu$ M in the presence of  $Mg^{2+}$  plus  $K^+$ . These values are essentially similar to the concentration of  $VO_3^-$  for half-maximal inhibition of the  $Ca^{2+}$ -ATPase, suggesting that inhibition of phosphorylation and of ATP hydrolysis is caused by the combination of  $VO_3^-$  at the same sites.

#### Discussion

Results in this paper show that VO<sub>3</sub> inhibits the Ca<sup>2+</sup>-ATPase of red cell membranes with high affinity.

Inhibition of the  $Ca^{2+}$ -ATPase is associated with a decrease in the steady-state level of the  $Ca^{2+}$ -dependent phosphoenzyme. This contrasts with the lack of effect of  $VO_3^-$  on the phosphorylation of the  $(Na^+ + K^+)$ -ATPase [4]. The decrease in the level of phosphoenzyme does not necessarily imply that  $VO_3^-$  blocks the phosphorylation reaction. Phosphoenzyme will also decrease if  $VO_3^-$  inhibits other partial reactions of the  $Ca^{2+}$ -ATPase, like for instance the  $E_2$ -to- $E_1$  conversion [14] as seems to be the case for the  $(Na^+ + K^+)$ -ATPase [17]. In fact, if we assume that  $VO_3^-$  binds to the  $E_2$  conformer of the  $Ca^{2+}$ -ATPase to block the  $E_2$ -to- $E_1$  conversion, steady-state kinetics give equations that predict both a kinetic pattern similar to that of Fig. 2 and a parallel decrease of phosphoenzyme level and of  $Ca^{2+}$ -ATPase activity (Barrabin, H., unpublished results).

 $VO_3^-$  lowers the apparent affinity of the regulatory site for ATP but inhibition persists at non-limiting concentrations of ATP. Thus, the site for  $VO_3^-$  in the  $Ca^{2+}$ -ATPase seems to be different from the regulatory site for ATP. It would seem, therefore, that inhibition of the  $Ca^{2+}$ -ATPase by  $VO_3^-$  can be accounted for by its effects on the catalytic site and that these effects are exerted from sites that show negative interactions in affinity with the regulatory sites for ATP. This mechanism is different to that proposed for the  $(Na^+ + K^+)$ -ATPase by Cantley et al. [2] who suggested that in this system  $VO_3^-$  competes with ATP at its low-affinity site.

Results also show that there are no interactions between the sites for  $VO_3^-$  and the high-affinity sites for  $Ca^{2+}$  of the  $Ca^{2+}$ -ATPase.  $Ca^{2+}$  at high concentration decreases inhibition by  $VO_3^-$ , an effect which has also been observed in the  $Ca^{2+}$ -ATPase from sarcoplasmic reticulum (Ref. 6 and Barrabin, H. and de Meis, L., personal communication). Results in this paper do not allow us to conclude whether the release from inhibition at high  $Ca^{2+}$  concentrations is caused by: (i)  $Ca^{2+}$  at a low-affinity site; (ii) displacement of  $Mg^{2+}$  or (iii) the formation of an ineffective Ca-vanadate complex.

The  $Ca^{2+}$ -ATPase possesses sites for  $Mg^{2+}$  and for  $K^{+}$  which show positive interactions in affinity with the site for  $VO_3^-$ . The interactions among these sites explain fully the large enhancement of the inhibitory effect of  $VO_3^-$  by  $Mg^{2+}$  and  $K^{+}$ . The apparent affinities of the sites of  $Mg^{2+}$  and  $K^{+}$  for inhibition by  $VO_3^-$  seem to be higher than those of the sites for activation of  $Ca^{2+}$ -dependent ATP hydrolysis. This make it difficult to identify these sites. In spite of this, the relative effectiveness of  $Li^+$ ,  $Na^+$  and  $K^+$  as activators of the  $Ca^{2+}$ -ATPase is preserved when they stimulate inhibition by  $VO_3^-$ . The effects of

 $Mg^{2+}$  and  $K^+$  on  $VO_3^-$  inhibition of the  $Ca^{2+}$ -ATPase are essentially similar to those reported by other authors for the  $(Na^+ + K^+)$ -ATPase [3]. In this system, also the affinities of  $Mg^{2+}$  and  $K^+$  for promotion of inhibition of the  $(Na^+ + K^+)$ -ATPase by  $VO_3^-$  have been reported to be less than those for stimulation of ATP hydrolysis [3]. An exception to the above-mentioned similarities is that in the  $(Na^+ + K^+)$ -ATPase,  $Na^+$  antagonizes the effect of  $K^+$  [3,4]. It is likely that this is a consequence of the fact that in the  $(Na^+ + K^+)$ -ATPase,  $Na^+$  is not a congener of  $K^+$  for activation, whereas in the  $Ca^{2+}$ -ATPase  $Na^+$  replaces  $K^+$  in this respect [16].

In view of the similarities between the effects of  $VO_3^-$  on the  $Na^+$  and the  $Ca^{2+}$  pumps, it seems that caution must be exerted when interpreting the interactions of  $K^+$  and  $VO_3^-$  with the  $Na^+$  pump in terms of the molecular mechanism of the active transport of  $K^+$  catalyzed by this system.

## Acknowledgements

This work was supported by grants from the CONICET and the SECYT (Argentina), the PNUD-UNESCO RLA 78/24 and the Programa Regional de Desarrollo Científico y Tecnológico of the O.E.A. H.B. is a recipient of a fellowship from the CONICET. P.J.G. and A.F.R. are established investigators of the CONICET.

#### References

- 1 Simons, T.J.B. (1979) Nature 281, 337-338
- 2 Cantley, L.C., Cantley, L.G. and Josephson, L. (1978) J. Biol. Chem. 253, 7361-7368
- 3 Bond, G.H. and Hudgins, P.M. (1979) Biochemistry 18, 325-331
- 4 Beaugé, L. (1980) in 2nd. International Conference on the Properties and Functions of Na,K-ATPase (Skou, J.C., ed.), Academic Press, London, in the press
- 5 Bond, G.H. and Hudgins, P.M. (1978) Fed. Proc. 37, abstr. 542
- 6 O'Neal, S.G., Rhoads, D.B. and Racker, E. (1979) Biochem. Biophys. Res. Commun. 89, 845-850
- 7 Di Polo, R., Rojas, H.R. and Beaugé, L.A. (1979) Nature 281, 228-229
- 8 Garrahan, P.J., Pouchan, M.I. and Rega, A.F. (1969) J. Physiol. 202, 305-327
- 9 Rega, A.F., Garrahan, P.J., Barrabin, H., Horenstein, A. and Rossi, J.P. (1979) in Cation Flux Across Biomembranes (Mukohata, Y. and Packer, L., eds.), pp. 67—76, Academic Press, New York
- 10 Glynn, I.M. and Chappell, B.J. (1964) Biochem. J. 90, 147-149
- 11 Richards, D.E., Rega, A.F. and Garrahan, P.J. (1977) J. Membrane Biol. 35, 113-124
- 12 Richards, D.E., Rega, A.F. and Garrahan, P.J. (1978) Biochim. Biophys. Acta 511, 194-201
- 13 Rega, A.F., Richards, D.E. and Garrahan, P.J. (1973) Biochem. J. 136, 185-194
- 14 Rega, A.F. and Garrahan, P.J. (1975) J. Membrane Biol. 22, 313-327
- 15 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275
- 16 Bond, G.H. and Green, J.W. (1971) Biochim. Biophys. Acta 241, 393-398
- 17 Karlish, S.J.D., Beaugé, L.A. and Glynn, I.M. (1979) Nature 282, 333-335
- 18 Wolf, H.U. (1973) Experientia 29, 241-249
- 19 Garrahan, P.J. and Rega, A.F. (1978) Biochim. Biophys. Acta 513, 59-65